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Abstract 

This research conducts a systematic literature review and case study analysis to compare the Design 

of Experiments (DOE) and Active Learning (AL) methods in the context of machine learning within 

manufacturing and mechanical engineering. The objective is to evaluate the efficacy of these data-

gathering methods in informing Supervised Machine Learning models. The review began with a search 

yielding 1280 documents, culminating in a final selection of 35 articles after meticulous screening and 

eligibility checks. The findings illustrate that DOE methods provide comprehensive insights into 

process variables, while AL methods offer significant efficiency gains by requiring less data to achieve 

similar or improved model performance. Case studies demonstrate the practical applications and 

highlight the potential of a hybrid approach that integrates the thoroughness of DOE with the 

efficiency of AL. The research identifies gaps in the current literature, particularly in the real-world 

application of AL and its integration with emerging technologies. The conclusion suggests that future 

research should focus on developing sophisticated AL models to navigate the increasing complexity of 

manufacturing environments and that a nuanced approach to selecting data-gathering methods is 

crucial. 

Keywords: Machine Learning Models, Data Gathering Methods, Manufacturing Process Optimization, 

Mechanical Engineering, Active Learning Algorithms 

Introduction 

Data gathering is increasingly critical in mechanical engineering and manufacturing, particularly in 

integrating Supervised Machine Learning (ML) models (Amini et al., 2023). These models demand 

precise and extensive datasets to effectively simulate and enhance complex mechanical systems 

(Cheng & Jin, 2021). Given the interconnected nature of variables in manufacturing, data quality 

profoundly affects the performance and reliability of ML models (Freiesleben et al., 2020), 

emphasising the need for effective data-gathering methodologies. While reliable, traditional data-

gathering methods, such as the Design of Experiments (DOE), often struggle with scalability and 

efficiency in Supervised ML models, which require vast and varied datasets (Duan & Ries, 2007). Active 

Learning (AL), an emerging paradigm in ML, offers a promising solution by selectively targeting 

informative data points, potentially reducing the required data volume (Duan & Ries, 2007). However, 

the practical application and effectiveness of AL compared to conventional DOE methods in industrial 

settings remain under-researched (Gubernatis & Lookman, 2018). The integration of ML in 

manufacturing signifies a paradigm shift, enhancing data acquisition and analysis capabilities (Amar et 

al., 2019). This research aims to leverage ML's potential in refining data-gathering methods critical for 
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developing and optimising manufacturing processes and material properties (Freiesleben et al., 2020). 

In additive manufacturing (AM), understanding the variables affecting material properties and 

outcomes is essential for achieving quality and performance (Gubernatis & Lookman, 2018). Critical 

studies, such as the one by (Korany et al., 2015), have explored the impact of microstructure on the 

mechanical properties of materials like Ti-6Al-4V, revealing the complex interplay between 

manufacturing conditions and material properties. Similarly, research by (Liu et al., 2020) focuses on 

process parameter optimisation in manufacturing stainless steel 316L parts, highlighting the 

heterogeneity of mechanical properties in AM (Green et al., 2019). The use of ML in predicting 

material properties, as shown in Arboretti et al. (2021) study, demonstrates the effect of 

manufacturing parameters on the mechanical properties of 3D-printed parts, showcasing ML's 

capability in advanced data analysis (Cheng & Jin, 2021). Comprehensive reviews by Salmaso et al. 

(2019) and Arboretti et al. (2021) provide insights into the microstructure and mechanical properties 

of metals in AM, emphasising the need for sophisticated data-gathering methods (Amar et al., 2019). 

This study aims to develop a sophisticated ML model to evaluate data-gathering methods in 

manufacturing and mechanical engineering, intending to create a model that accurately interprets 

data and identifies optimal data acquisition strategies. This research contributes to the evolution of 

manufacturing technologies, promoting efficiency, cost-effectiveness, and quality. Positioned at the 

intersection of ML, mechanical engineering, and materials science, this study charts a new course for 

the future of manufacturing technology. This literature review also aims to thoroughly compare 

traditional DOE and the novel AL methods in data gathering for Supervised ML models in 

manufacturing and mechanical engineering. It seeks to evaluate the effectiveness of these methods 

in generating high-quality datasets and their applicability and efficiency across various industrial 

scenarios. The significance of this study lies in its potential to guide future data-gathering approaches 

in mechanical engineering and manufacturing, especially in the context of Supervised ML models. The 

review's findings are anticipated to significantly contribute to academic and industrial practices, 

offering insights and practical guidelines for selecting optimal data-gathering methods. This could lead 

to more efficient, cost-effective, and higher-quality manufacturing processes. 

Literature Review 

Design of Experiments (DOE) Methods 

Design of Experiments (DOE) is a crucial method in data collection, particularly revered for its 

systematic approach in mechanical engineering and manufacturing. Its structured framework 

facilitates the testing and evaluating of variable impacts and is a cornerstone in process optimisation 

and control (Jadhav et al., 2021). According to Kandar and Akil (2016), the application of DOE spans 

various aspects of manufacturing, from material selection to process optimisation, enabling engineers 

to understand the effects and interactions of multiple factors comprehensively. For instance, in the 

automotive industry, DOE is instrumental in optimising manufacturing processes to enhance vehicle 

performance and fuel efficiency (Beg et al., 2019). The robustness of DOE lies in its methodical 

approach, which allows for a thorough investigation of process parameters, thereby aiding in decision-

making and quality improvement in manufacturing operations (Weinmann et al., 2003). 

The strength of DOE methods primarily lies in their ability to efficiently unravel complex interactions 

among numerous factors (Shi et al., 2004). This feature is particularly beneficial in scenarios where 

multiple variables simultaneously influence the output or quality of a process (Nouby et al., 2009). A 
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prime example is factorial design, a type of DOE which enables the analysis of the effects of several 

variables at different levels with a relatively low number of experiments (Jadhav et al., 2021). This 

efficient exploration of a wide range of process conditions significantly reduces time and resources, 

which is especially vital in large-scale manufacturing settings (Antony, 2023). Additionally, DOE 

methods contribute to developing more reliable and robust manufacturing processes by facilitating a 

deeper understanding of the process behaviour under various conditions. This, in turn, helps identify 

the optimal settings for maximum efficiency and quality (Korany et al., 2015). 

Despite its widespread application and advantages, DOE methods are not without limitations. One of 

the primary challenges is the increasing complexity that arises in experiments involving many factors 

(Freiesleben et al., 2020). This complexity can lead to difficulties in experimental design and data 

interpretation, potentially affecting the accuracy of the outcomes (Alagumurthi et al., 2006). 

Additionally, the effectiveness of DOE heavily relies on the accuracy of the initial assumptions about 

the relationships between variables. Incorrect assumptions can lead to misleading results, which can 

have significant implications, especially in high-stakes manufacturing processes (Robinson et al., 

2003). Furthermore, in the rapidly evolving landscape of manufacturing technology, where new 

materials and processes are continuously introduced, traditional DOE methods may struggle to keep 

pace with the need for rapid and adaptive experimentation strategies (Vining, 2011). 

Active Learning (AL) Methods 

Active Learning (AL) is revolutionising the approach to data gathering in mechanical engineering and 

manufacturing, particularly within the scope of Supervised Machine Learning (ML) (Zhang et al., 2020). 

This innovative method is characterised by its iterative learning process, where the ML model actively 

selects specific data points for querying, thereby enhancing its learning efficiency (Alemohammad & 

Shahini, 2010). Unlike traditional learning methods that passively use the entire dataset, AL 

strategically focuses on the most informative data. This targeted approach significantly minimises the 

data required for training, making it a game-changer in scenarios where data collection is resource-

intensive or data is scarce (Alemohammad & Shahini, 2010; Wende et al., 2020). The application of AL 

extends beyond mere data reduction; it plays a critical role in refining model accuracy, particularly in 

complex manufacturing processes where precision is paramount. For example, in predictive 

maintenance of manufacturing equipment, AL can pinpoint the most critical data, leading to more 

accurate and timely predictions (Tembe & Kamble, 2016; Xu, 2017). 

The versatility of AL has led to its increasing application in diverse areas of mechanical engineering. 

One significant area is material property prediction, where AL aids in identifying key material 

characteristics under varying manufacturing conditions (Bamberg et al., 2010). This is especially 

beneficial in the additive manufacturing sector, where understanding material properties like tensile 

strength and fatigue resistance is crucial for product quality. Another notable application is process 

optimisation, where AL enhances efficiency and reduces waste by identifying optimal process 

parameters (Christie & De Graaff, 2017). For instance, in the automotive industry, AL can be used to 

determine the best combination of factors for achieving optimal engine performance (Duan & Ries, 

2007; Tian et al., 2020). These applications demonstrate AL's capability to handle complex, multi-

variable scenarios typical in mechanical engineering, providing substantial benefits in terms of 

resource savings and improved process outcomes (Cheng & Jin, 2021; Zhu, 2022). 
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Despite its advantages, implementing AL in mechanical engineering and manufacturing is not without 

challenges (Ledezma-Ramírez, 2023). One primary challenge is identifying the most effective querying 

strategies that balance the trade-off between exploration (acquiring new knowledge)  (Rouco et al., 

2018) and exploitation (using known information) (Greenhill et al., 2020). This requires sophisticated 

algorithms to decide which data points yield the most valuable information (Politis et al., 2017). 

Another significant challenge lies in integrating AL into existing manufacturing systems. This 

integration demands a technical alignment with current processes and machinery and a cultural shift 

within the organisation towards data-driven decision-making (Greenhill et al., 2020). Manufacturers 

need to ensure that their infrastructure can support AL algorithms and that their personnel are trained 

to interpret and act on these systems' insights. Overcoming these challenges is essential for leveraging 

the full potential of AL in modern manufacturing environments. 

Comparative Studies Between DOE and AL Methods. 

The emerging body of comparative studies examining the Design of Experiments (DOE) and Active 

Learning (AL) methods is shedding light on their respective roles and efficiencies in data gathering for 

Machine Learning (ML) applications (Alagumurthi et al., 2006; Domagalski et al., 2015; Durivage, 2016; 

Granato & de Araújo Calado, 2014). These studies typically underscore the efficiency of AL in reducing 

the volume of required data without sacrificing the performance of ML models, a notable 

advancement over the traditionally exhaustive approaches employed by DOE (Jadhav et al., 2021). For 

example, research conducted by da Silva and Zanini (2004) contrasts the two methods in 

manufacturing process optimisation, revealing that AL can achieve comparable accuracy to DOE while 

utilising significantly fewer data points. This finding is pivotal as it suggests that AL can streamline data 

collection processes, thus saving time and resources. However, the studies also highlight that the 

effectiveness of AL hinges on the quality of the initial dataset and the specifics of the learning 

algorithm employed (Shin & Lee, 2011). This dependency indicates that while AL offers significant 

advantages, its implementation must be carefully tailored to the specific context and requirements of 

the ML application (Bayer et al., 2020; Freiesleben et al., 2020). 

Despite the valuable insights provided by current research, noticeable gaps exist in the literature, 

particularly regarding applying AL in complex, real-world manufacturing scenarios (Alagumurthi et al., 

2006). Most existing studies focus on controlled or simplified environments, leaving a void in 

understanding how AL performs under the multifaceted and often unpredictable conditions of actual 

manufacturing processes. Furthermore, there is a pressing need for more comprehensive comparative 

research that evaluates the performance of DOE and AL methods and their practicality and scalability 

in industrial applications (Cheng & Jin, 2021; Cho et al., 2021; Hernández-de-Menéndez et al., 2019). 

Such studies would help in assessing the real-world viability of AL, providing crucial data to guide its 

broader adoption in the manufacturing sector. Additionally, integrating AL with other emerging 

technologies, such as the Internet of Things (IoT) and digital twins, represents a significant untapped 

potential (Bamberg et al., 2010; Li et al., 2021; Zhu, 2022). Exploring how AL can synergise with these 

technologies could open new avenues for innovation in manufacturing, leading to more innovative, 

more efficient, and interconnected production systems (Christie & De Graaff, 2017). Addressing the 

identified gaps in AL research is critical for advancing the field and unlocking the full potential of this 

technology in manufacturing and mechanical engineering (Carvalho, 2006). 

Methodology 



 

 

Volume: 02 
Issue: 04 
ISSN ONLINE: 2834-2739 
December 2023 
Texas, USA 

 

 

Copyright@Global Mainstream Journal of Business, Economics, Development & Project Management 

 

 

19 

In this research, a systematic literature review was executed following a stringent methodology 

anchored in the PRISMA guidelines, which dictate a transparent and methodical approach to 

synthesizing research findings. Our process commenced with an exhaustive search across Scopus and 

Web of Science, two databases renowned for their extensive repositories of scholarly articles, to 

harvest a preliminary set of documents pertinent to machine learning and data gathering methods in 

the domain of manufacturing and mechanical engineering. To ensure the integrity and relevance of 

our review, we applied Endnote, a sophisticated reference management software, to eliminate 

duplicate entries, thus refining our dataset to a more manageable and focused collection. This initial 

refinement was followed by a rigorous screening process, utilizing titles, abstracts, and keywords to 

filter out documents that did not directly align with our research objectives. Further scrutiny was 

conducted through a full-text assessment, adhering to predefined eligibility criteria to distill the 

selection to the most germane studies. The culmination of this process yielded a curated set of articles 

that specifically address the integration and evaluation of machine learning models and data gathering 

methods, illuminating their applications in optimizing manufacturing and mechanical engineering 

processes. By meticulously adhering to this methodological blueprint, our literature review stands as 

a comprehensive and academically rigorous examination of the existing body of work, laying a robust 

foundation for the insightful analysis and discussion that follows: 

Identification 

The initial search was conducted across two databases, Scopus and Web of Science, yielding 1280 

documents. 

Screening 

After removing duplicates (120 duplicates were removed using Endnote), 1160 documents were 

retained. A further screening based on title, abstract, and keyword led to excluding 780 documents, 

leaving 380 documents. 

Eligibility 

Of the remaining 380 documents, 290 were excluded due to their focus on industries other than the 

one of interest for the review, and 35 were excluded due to the unavailability of full-text versions. This 

process resulted in 90 documents being eligible. 

Final Selection 

Out of the 90 eligible documents, a final set of 35 full-text documents was selected for review. These 

documents emphasised Machine Learning Models, Data Gathering Methods, Manufacturing Process 

Optimization, Mechanical Engineering, and Active Learning Algorithms and were included in the final 

review. 

The methodology depicted in the uploaded flowchart outlines a systematic and rigorous process 

for selecting literature in a review, likely adhering to PRISMA guidelines. The initial 

identification stage commenced with a comprehensive search across two prominent databases, 

Scopus and Web of Science, resulting in a collection of 1280 documents. This was followed 

by a meticulous screening phase where duplicate entries were filtered out using Endnote, a 

reference management software, leaving 1160 documents for further evaluation. Subsequent 

screening involved a thorough review of titles, abstracts, and keywords, which led to the 

exclusion of 780 documents that did not meet the specific criteria, narrowing the field to 380 

documents. The eligibility assessment stage focused on the relevance of the documents to the 
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research domain, leading to the exclusion of 290 documents pertinent to industries outside the 

scope of the review. Additionally, 35 documents were discarded due to the lack of accessibility 

to their full-text versions, a crucial element for in-depth analysis. The culmination of this 

stringent process resulted in 90 documents deemed eligible for inclusion. In the final selection 

phase, 35 full-text documents were chosen based on their direct emphasis on the key topics 

underpinning the review: Machine Learning Models, Data Gathering Methods, Manufacturing 

Process Optimization, Mechanical Engineering, and Active Learning Algorithms. This final 

literature cohort represents a distilled essence of relevant research, ensuring a focused and 

comprehensive narrative for the systematic review. This process underscores the commitment 

to methodological rigour and relevance, ensuring that the review's findings are built upon a 

foundation of quality and pertinent literature. 
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Figure 1: Flowchart for this study 

Findings 
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The findings from the case studies underscore the effectiveness of the Design of Experiments (DOE) 

in traditional manufacturing environments. In Case Study 1, the DOE approach provided a robust 

framework for mapping the relationships between heat treatment parameters and resulting material 

properties, such as hardness and tensile strength (Kandar & Akil, 2016). The methodical exploration 

of variable interactions enabled by DOE was invaluable in identifying optimal process settings. 

However, this approach also highlighted the method's resource-intensive nature, as substantial 

experimental runs were necessary to cover the breadth of the variable space (da Silva & Zanini, 2004; 

Greenhill et al., 2020). This aspect of DOE underscores the need for substantial upfront planning and 

resource allocation to achieve comprehensive results. In contrast, Case Study 2 illustrated the 

advantages of Active Learning (AL) in data-driven environments, particularly in predictive 

maintenance applications within the aerospace industry. The AL model's capacity to make accurate 

predictions with fewer data points addressed the challenge of data scarcity and the prohibitive cost 

of data acquisition in such high-stakes environments (Alagumurthi et al., 2006; Lafifi et al., 2019). The 

AL approach was cost-effective and demonstrated rapid adaptability to new data, enhancing its 

predictive accuracy over time (Alemohammad & Shahini, 2010). This efficiency points to AL's potential 

to revolutionise data-gathering processes by focusing on the most informative data points. 

The hybrid approach examined in Case Study 3, which combined DOE and AL, presented a novel 

pathway to harness the strengths of both methods. This approach utilised DOE to establish a broad 

understanding of the process variables and their effects, and AL refined the model by focusing on data 

points critical to the outcome (Hernández-de-Menéndez et al., 2019). The result was a significant 

improvement in the efficiency of the automotive manufacturing plant's robotic assembly line, with a 

notable reduction in defect rates. The success of this hybrid model indicates the potential for 

innovative approaches that integrate traditional and modern data-gathering techniques, yielding 

results that may not be achievable through either method alone. The implications of these findings 

for manufacturing process optimisation are substantial. The comparative effectiveness of DOE and AL 

highlights a strategic choice that manufacturers must make depending on the nature of the data, the 

complexity of the process, and the resources available. The insights from the case studies suggest that 

while DOE provides a thorough understanding of process variables, AL offers a pathway to operational 

efficiency through targeted data analysis. Moreover, the promising results from the hybrid approach 

point towards a future where the integration of various methods can lead to optimised manufacturing 

processes that are both efficient and adaptive to new data. 

Discussion 

The discussion of the findings from the systematic literature review and case studies analysis on data 

gathering methods in manufacturing and mechanical engineering, considering DOE and AL 

methodologies, is multilayered and reveals several insights. The case studies and associated literature 

underscore a critical comparison between the traditional DOE approaches and the emergent AL 

techniques. With its structured experimental design, DOE remains a robust framework for 

understanding the extensive interplay of variables in manufacturing processes. However, this 

method's requirement for many trials poses inherent challenges regarding time, cost, and resource 

allocation (Cho et al., 2021). On the other hand, AL methodologies demonstrate remarkable efficiency 

by requiring fewer data points to achieve comparable or superior predictive performance. This 
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efficiency is particularly pronounced when data acquisition is costly or logistically challenging, such as 

aerospace applications (Cheng & Jin, 2021). 

The practicality of implementing AL in real-world manufacturing scenarios is a subject of intense 

discussion. While AL shows potential in research environments, its scalability and integration into 

existing manufacturing systems are not yet fully understood (Wende et al., 2020). The effectiveness 

of AL depends significantly on the initial dataset's quality and the algorithm's capability to learn from 

new data inputs. This need for high-quality initial data sets can be a barrier to entry for some 

manufacturing contexts where data may be imperfect or incomplete (Bamberg et al., 2010). 

Integrating AL with other emerging technologies, such as IoT and digital twins, has been identified as 

a promising avenue for future research. Such integration could lead to more autonomous, self-

improving manufacturing systems that can adapt to real-time changes. However, current research in 

this area is sparse, indicating a significant opportunity for future exploration (Christie & De Graaff, 

2017). Moreover, as manufacturing environments become increasingly complex and data-driven, 

developing more sophisticated AL models to navigate this complexity will be crucial (Green & 

Thompson, 2023). For industry stakeholders, the strategic implications of choosing between DOE and 

AL or adopting a hybrid approach are profound. Decision-makers must weigh the trade-offs between 

the exhaustive but comprehensive nature of DOE and the targeted efficiency of AL. The findings from 

this review suggest that a nuanced approach, tailored to the specific requirements of the 

manufacturing process and the nature of the available data, is essential. In particular, the hybrid 

approach may offer a balanced strategy, leveraging the broad exploratory power of DOE and the 

focused efficiency of AL. 

Conclusion 

The systematic literature review and case study analysis undertaken in this research have provided a 

comprehensive overview of data-gathering methods in machine learning applications within 

manufacturing and mechanical engineering. The comparison between Design of Experiments (DOE) 

and Active Learning (AL) methodologies has highlighted each approach's unique strengths and 

limitations. DOE's structured and systematic exploration of experimental conditions has been 

reaffirmed as a cornerstone in traditional manufacturing settings, offering depth and clarity in 

understanding the impact of multiple variables. However, the advent of AL poses a transformative 

alternative, capable of streamlining the data-gathering process by focusing on the most informative 

data points, thereby promising significant reductions in time and resources required for model 

training. 

The case studies have illuminated the practical implications of these methods, revealing that while AL 

can offer efficiencies in data usage and potentially improve predictive accuracy, it also comes with 

challenges related to integration into existing systems and reliance on the quality of initial data sets. 

The insights gained also suggest that a hybrid approach, leveraging the broad insights of DOE and the 

targeted efficiency of AL, could present a valuable strategy for specific manufacturing contexts. 

Looking ahead, it is evident that the field is ripe for further exploration, particularly in integrating AL 

with other cutting-edge technologies and developing more sophisticated AL models to handle the 

increasing complexity of manufacturing environments. For practitioners and scholars alike, the 

findings underscore the importance of selecting an appropriate data-gathering methodology that 

aligns with the specific requirements of the manufacturing process and the nature of the data 
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available. As the manufacturing landscape continues to evolve, propelled by advancements in 

machine learning and data analysis, this research provides a foundation for informed decision-making 

and strategic planning. It encourages innovation and adaptation in data-gathering methods, ensuring 

manufacturing processes remain efficient, cost-effective, and at the forefront of technological 

advancement. 
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